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Abstract

The cubic nonlinear Schrödinger (NLS) equation with periodic boundary conditions is solvable using Inverse Spectral
Theory. The ‘‘nonlinear’’ spectrum of the associated Lax pair reveals topological properties of the NLS phase space that
are difficult to assess by other means. In this paper we use the invariance of the nonlinear spectrum to examine the long
time behavior of exponential and multisymplectic integrators as compared with the most commonly used split step
approach. The initial condition used is a perturbation of the unstable plane wave solution, which is difficult to numerically
resolve. Our findings indicate that the exponential integrators from the viewpoint of efficiency and speed have an edge over
split step, while a lower order multisymplectic is not as accurate and too slow to compete.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Exponential integrators have been popular in recent literature and they seem especially attractive in PDE
settings as a means of easily obtaining high order explicit schemes without step size restrictions for the time-
integration. The notable property of exponential integrators is the use a splitting of the problem into a linear
part, possibly rendering the problem stiff, and a nonlinear part. The linear part is treated exactly, in an attempt
to ameliorate temporal step size restrictions imposed by possible stiffness inherent in the PDE problem. How-
ever, experience with exponential integrators on long time scales for various PDEs with a complicated phase
space structure is not abundant. This paper examines whether exponential integrators are a viable alternative
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for the time integration of PDEs, by comparing them with two other classes of time-integrators and by using
the NLS equation as a benchmark problem.

The NLS equation is completely integrable with a rich phase space structure (i.e. stable as well as unstable
solutions with homoclinic orbits). Typically the performance of an integrator has been determined by exam-
ining the preservation of global invariants such as energy and momentum. The nonlinear spectrum of the asso-
ciated Lax pair of the PDE provides a detailed description of the phase space and is invariant in time.
Following [1], we monitor the spectrum to assess how well the phase space is preserved by the various inte-
grators. Section 2 outlines the necessary properties of the inverse spectral theory.

For Hamiltonian PDEs possessing a multisymplectic structure (symplectic in both space and time), multi-
symplectic integrators preserve exactly a discrete version of the multisymplectic structure [2]. For quadratic
Hamiltonians, multisymplectic integrators preserve the local conservation laws exactly. Even though this is
not the case for the NLS equation, multisymplectic integrators were shown to provide improved resolution
of the local conservation laws and dynamical invariants [3,1]. Compared to classical integrators (Runge–
Kutta), multisymplectic integrators exhibited less drift in the conservation laws over long time periods [1].
We include an implicit second order multisymplectic integrator for comparison with the exponential integra-
tors and it is found to be the most computationally demanding integrator among those tested. Whether
improved preservation of the structural and geometric properties of the PDE by multisymplectic integrators
justifies their additional computational cost remains an open question.

Section 3 gives the necessary details of the spectral space discretization, which will be equivalent for all
schemes included in this study. In Section 3.2 exponential integrators are presented in a format including
the majority of known exponential integrators, and specifications of the exponential integrators used are given
in coefficient function tableaus. We restrict our attention to explicit exponential integrators to facilitate speed
and ease of implementation, and test the two integrators CFREE4 and LAWSON4. The implementation has
used the MATLAB package described in [4] directly. A fourth order split step scheme obtained by Yoshida’s
technique is included for comparison, as it is, in many ways, related to exponential integrators and it is also
used fairly extensively in the physics community. We only included a multisymplectic integrator of order two
as, even at this order, it turned out to be computationally more intensive than the other integrators. Our final
criteria for comparing integrators is based on accuracy obtained for fixed CPU time, and thus it makes sense to
compare integrators with differing asymptotic order.

The numerical results are given in Section 4 where we examine how well the most critical features of the
nonlinear spectrum are preserved. Knowledge of the properties of the nonlinear spectrum makes it possible
to give simple criteria for determining whether a numerical result is acceptable or not. We present results
in table form and conclude that among our integrators, CFREE4 seems to be the most reliable and CPU effec-
tive choice for our problem.
1.1. The nonlinear Schrödinger equation

The periodic focusing nonlinear Schrödinger (NLS) equation
ut ¼ iuxx þ i2juj2u; ð1Þ

u(x + D, t) = u(x, t), is an infinite dimensional integrable Hamiltonian system with Hamiltonian
Hðu; u�Þ ¼
Z D

0

juxj2 � juj4
� �

dx: ð2Þ
The (complex) solution u(x, t) represents the slow space-time evolution of the envelope of a carrier signal, and
has important applications in nonlinear optics, deep water waves and also plasma physics. The wave Eq. (1)
bears its name because it corresponds to the quantum Schrödinger equation with 2juj2 as the potential.

An important physical prediction of the NLS equation is the Benjamin–Feir or modulational instability for
periodic boundary conditions [5]. An example of this is provided by the plane wave solution,
uðx; tÞ ¼ ae2ijaj2t: ð3Þ
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which has M linearly unstable modes with growth rates r2
n ¼ l2

nðl2
n � 4a2Þ; ln = 2pn/D, provided
0 < ðpn=DÞ2 < jaj2 ð4Þ

is satisfied (the number M of unstable modes is the largest integer satisfying 0 < M < jajD/p). That is, the plane
wave is unstable with respect to long wavelength perturbations.

In the numerical experiments we consider multi-phase solutions whose initial data is obtained by perturbing
the plane wave solution,
uðx; 0Þ ¼ að1þ �eiw cosðlnxÞÞ; ð5Þ

where a ¼ 1

2
, ln ¼ 2pn

D and D ¼ 4
ffiffiffi
2
p

p is the length of the spatial domain. Typically, the strength of the pertur-
bation � is chosen to be 0.1, w = 0 and n = 1. For the given spatial length D, the plane wave has two unstable
modes, thereby the initial condition is coined the two-mode case. Increasing the spatial period results in more
unstable modes, making the problem numerically harder.
2. The inverse spectral method

In [6], the NLS Eq. (1) was shown by Zakharov and Shabat to be completely integrable (with infinite
sequences of commuting flows and common conservation laws) and solvable by inverse scattering theory
for rapidly decreasing initial data on the infinite line. Special solutions such as solitons, which are localized
wave packets (envelope solutions for the NLS equation) that survive collisions with one another, were proven
to exist in this case. More generally, inverse spectral theory provides a method, the analog of the whole-line
inverse scattering theory, for solving the NLS equation on periodic domains. Its, Krichever and Kotlarov used
inverse spectral theory and methods of algebraic geometry to obtain N-phase solutions of the periodic NLS
equation, expressible in terms of Riemann theta functions [7–9].

2.1. Lax pair and characterization of the spectrum

The inverse scattering and spectral methods may be viewed as a generalization of Fourier methods for solv-
ing linear PDEs. Briefly, the complete integrability of the NLS equation is established by using the associated
Lax pair of linear operators defined by [6]:
LðxÞ/ ¼ 0 and LðtÞ/ ¼ 0; ð6Þ

where
LðxÞ ¼
d
dxþ ik �u

u� d
dx� ik

 !
and LðtÞ ¼

d
dt þ i½2k2 � juj2� �2ku� iux

2ku� � iu�x
d
dt � i½2k2 � juj2�

 !
ð7Þ
The coefficients u(x, t) are periodic in x, u(x + D, t) = u(x, t), k is the spectral parameter, and / is the eigenfunc-
tion. The NLS equation arises as the solvability or compatibility condition for these operators, i.e., /xt = /tx if
and only if u(x, t) satisfies the NLS Eq. (1).

The first step in solving the NLS equation is to calculate the direct spectral transform of the initial data, i.e.
to determine the spectrum of LðxÞ, which is analogous to calculating the Fourier coefficients in Fourier theory.
Next, time evolution is performed on the ‘‘spectral data’’ using LðtÞ. Finally the inverse spectral transform is
calculated in order to recover the waveform at a later time.

The direct spectral transform and its inverse provide a one-to-one correspondence between solutions of the
NLS equation and the spectral data. The spectral data consists of two types of spectrum of LðxÞ; the periodic
eigenvalues kj and the Dirichlet eigenvalues lj (to be defined below). The direct spectral transform consists of
computing (kj,lj) from u(x, t). A fundamental property is that the periodic eigenvalues kj are invariants of the
NLS flow whereas the Dirichlet spectrum flows in both x and t. The time dependence of lj(x,t) is generated by
LðtÞ and is equivalent to the dynamics of the NLS flow since LðxÞ and LðtÞ are compatible. The inversion for-
mula for N-phase solutions of the NLS is given by the trace formula [7]:
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iux

u
¼
X2N

j¼1

kj � 2
XN�1

j¼1

lj:
For periodic potentials the spectrum is obtained using Floquet theory. This spectral analysis is similar to that
of the time-independent Hill’s operator, with the main difference that LðxÞ is not self-adjoint. The spectrum of
u,
rðuÞ ¼ fk 2 CjLðxÞ/ ¼ 0; j/j bounded 8 xg; ð8Þ

can be expressed in terms of the transfer matrix M(x + D; u,k) across a period, where M(x; u,k) is a funda-
mental solution matrix of the Lax pair (7). Introducing the Floquet discriminant D(u,k) = Trace[M(x + L;
u,k)], one obtains
rðuÞ ¼ fk 2 CjDðu; kÞ 2 R;�2 6 Dðu; kÞ 6 2g: ð9Þ

The distinguished points of the periodic/antiperiodic spectrum are where D(u,kj) = ±2, and are categorized as

(a) Simple points fks
jj dD

dk 6¼ 0g,
(b) Double points fkd

j j dD
dk ¼ 0; d2D

dk2 6¼ 0g.

The Floquet discriminant functional D(u,k) is invariant under the NLS flow and encodes the infinite family
of constants of motion of the NLS (parametrized by the kj’s). While the kj’s are equivalent to a set of invariant
action variables, the lj’s (which are the zeros of the M12 entry of the transfer matrix and are not invariant)
provide the conjugate angle variables.

The Floquet spectrum (9) of a generic NLS potential consists of the entire real axis plus additional curves
(called bands) of continuous spectrum in the complex plane which terminate at the simple points ks

j. N-phase
solutions are those with a finite number of bands of continuous spectrum. Double points can be thought of as
the coalescence of two simple points and their location is particularly significant. The order and location of the
kj completely determine the spatial structure and nonlinear mode content of NLS solutions as well as the
dynamical stability as follows [10,11]:

(a) Simple points correspond to stable active degrees of freedom.
(b) Double points label all additional potentially active degrees of freedom.

Real double points correspond to stable inactive (zero amplitude) modes. Complex double points corre-
spond to the unstable active modes and parametrize the associated homoclinic orbits.

The N-phase quasiperiodic solutions of the NLS equation have the form [9,7,8],
uðx; tÞ ¼ u0eiðk0x�x0tÞHðW�jsÞ
HðWþjsÞ ; ð10Þ
where H is the Riemann theta function, W� ¼ ðW �
1 ; . . . ;W �

N Þ, and the phases evolve according to
W �

j ¼ ðjjxþ Xjt þ h�j Þ. The external phase as well as the wavenumbers jj and frequencies Xj are expressible
in terms of algebraic-geometric data including the branch points of the associated Riemann surface (namely,
the simple points ks

j of the Floquet spectrum). The entire x and t dependence of an N-phase solution is cap-
tured by ODEs for the lj’s. Essentially these ODEs linearize via the classical Abel–Jacobi map associated with
the Riemann surface. The phases W �

j in the action-angle description of these solutions are the images of lj(x, t)
under the Abel–Jacobi map.

In terms of the NLS phase space, the values of the actions kj fix a particular level set. The level set defined
by u is then given by, Mu � fvjDðv; kÞ ¼ Dðu; kÞ; k 2 Cg. Typically, Mu is an infinite dimensional stable
torus. However, the NLS phase space also contains degenerate tori which may be unstable. If a torus is
unstable, its invariant level set consists of the torus and an orbit homoclinic to the torus. These invariant
level sets, consisting of an unstable component, are represented, in general, by complex double points in
the spectrum [11].
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In our experiments we implement the first step of the inverse spectral method and appeal to the invariance
of the kj’s to evaluate the ability of the various numerical schemes to preserve the NLS phase space structure.
The nonlinear spectrum for the Lax pair (7) is computed numerically using Fortran software at each timevalue
of the solution. In our case, only the kj’s where D = ±2 are necessary. The discriminant function D is obtained
by a direct nonlinear spectral transform, solving the overdetermined system of ODEs (in the variable x) given
by the Lax pair for the given numerical solution u(x, t). The zeros of D = ±2 are then obtained with a root
solver using Muller’s method as in [12]. The spectrum itself is calculated with an accuracy of Oð10�8Þ which
is sufficient for our results.

2.2. Perturbation of the plane wave

The simplest example of an N-phase solution of the NLS equation is the plane wave solution (3). In this

case, the Floquet discriminant is given by Dða; kÞ ¼ 2 cosð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ k2

p
DÞ and thus the spectrum consists of the

entire real axis and the band [�ia, ia]. At ±ia there is a pair of simple periodic/antiperiodic eigenvalues and
there is an infinite sequence of double points,
k2
j ¼ ðjp=DÞ2 � a2 ð11Þ
for j 2 Z, of which 2 ºa D/pß = 2M are pure imaginary double points and the remaining are real. The condi-
tion for a complex double point is exactly the condition for a mode to be linearly unstable (compare with (4)).
However, in contrast to inverse spectral theory, linear analysis does not provide any answers to what happens
to the solution on a long time-scale.

When a = 0.5 and D ¼ 4
ffiffiffi
2
p

p in (3), M = 2 and k1 and k2 are complex double points (since the spectrum is
symmetric with respect to the real axis we restrict our consideration to Imk P 0). It is difficult in advance to
predict the time of failure using only physical data or a few global constants. For the family of initial data (5),
as the energy levels are varied slightly there are alternating windows of stable and unstable tori. As a conse-
quence, we have found that the kj’s, which determine the geometry of the level sets, are the significant quan-
tities to preserve [1].

Assuming u = u(0) + �u(1) +� � �,k = k(0) + �k(1) +� � �, and / = /(0) + �/(1) +� � �, the spectrum of initial data
(5) can be calculated via perturbation analysis. Substituting these expansions into (7), the kð0Þj are given by
(11) and the corrections at Oð�Þ are [13]
ðkð1Þj Þ
2 ¼

a2

16k2
j
ðe�i/ � 1

a2 ðjp=Dþ kjÞ2ei/Þ � ðe�i/ � 1
a2 ð�jp=Dþ kjÞ2ei/Þ j ¼ n

0 j 6¼ n

(
ð12Þ
At Oð�Þ there is a correction only to the double point kð0Þj ; ðj ¼ nÞ, which resonates with the perturbation. The
other double points do not experience an Oð�Þ correction.

The behavior of the correction kð1Þj ; ðj ¼ nÞ, depends on whether the double point kð0Þj is real or imaginary:
ðkð1Þj Þ
2 ¼

� a2

4k2
j

sinð/þ hÞ sinð/� hÞ for kj imaginary

� a2

8k2
j
½cos 2/þ 1� 2ðjp=DÞ2=a2� for kj real

8<
:

where tan h = Im(kj)D/(jp). Since initial data (5) is for a solution even in x, the spectrum has an additional
symmetry with respect to the imaginary axis. This is reflected in the correction kð1Þj which, for imaginary double
points, is either real, zero or pure imaginary [13] depending on the choice of w in the perturbed potential, i.e.
imaginary double points can split into either crosses or gaps in the spectrum. This is a realization of the saddle
structure of the real part D(u,kj) when kj is imaginary. More generally, if the potential is noneven in x, the
correction kð1Þj is fully complex and the double point can split in any direction, yielding an asymmetric version
of a gap state.

For real double points, the correction kð1Þj can only be imaginary. Gaps cannot appear on the real axis in the
spectrum of LðxÞ. Hence the situation with real double points is very different from that of imaginary double
points. Splitting of real double points only introduces additional degrees of freedom into the spatial structure



Fig. 1. The spectrum (9) for (a) the plane wave (3) and (b) the perturbed plane wave data (5). The perturbation of strength � opens up the
two double points of the plane wave spectrum (a) and yields the perturbed spectrum (b) with two gaps corresponding to two semi-stable
modes in the solution (see Fig. 2). Real double points are not shown.

Fig. 2. The surfaceju(x,t)j2of the¨dinger equation x= 0 corresponds togapG1in
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but does not introduce an instability as homoclinic manifolds are not associated with them. At the next order
only the double points kj, (j = 2n), experience an Oð�2Þ-splitting. A full determination of the splitting at higher
order is given in [13] and in the non-even case in [14].

The Floquet spectrum for initial data (5), with w = 0 and n = 1 is shown in Fig. 1b. The corrections to k1

and k2, as determined by (12), are pure imaginary and gaps G1 and G2 open in the spectrum with sizes of order
� and �2, respectively [13]. The double point kj splits into k�j and the gap Gj ¼ kþj � k�j . The first gap corre-
sponds to the center mode in Fig. 2 and from k�1 the spatial and temporal frequencies of the mode are deter-
mined. Similarly k�2 (corresponding to the smaller gap of size �2) determine the wave number and frequency of
the second mode which appears symmetrically on both sides. If the ratio of the two temporal frequencies is a
rational number, the initial condition will recur in finite time.

3. Numerical integrators

3.1. Space discretization

The instability of the NLS equation which we are examining occurs only for periodic boundary condition,
thus it is reasonable to restrict our attention to spectral spatial discretizations making use of the fast Fourier
transform. The spatial resolution is equivalent for all of the schemes considered, so the differences in perfor-
mance are attributable to the time integrators.

Let
nonlinear Schrowith initial condition(5). The center modeFig.
ûðk; tÞ ¼Fðuðx; tÞÞ ¼ 1

D

Z D=2

�D=2

uðx; tÞe�mk xdx
with k 2 Z and mk ¼ 2pi
D k be the Fourier transform of u(x,t). The inverse Fourier transform is
around 1b, and the second mode appearing around x= ±3 in theju(x,t)j2-plot corresponds to gapG2inFig. 1b.
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uðx; tÞ ¼F�1ðûðk; tÞÞ ¼
X1

k¼�1
ûðk; tÞemk x:
In Fourier space, Eq. (1) then takes the form of an infinite system of first order ODEs
ûtðk; tÞ ¼ im2
k ûðk; tÞ þ 2ijF�1ðûðk; tÞÞj2ûðk; tÞ k 2 Z; t P 0

ûðk; 0Þ ¼Fðuðx; 0ÞÞ:
ð13Þ
The spatial discretization now consists of truncating (13) to NF=2 6 k 6 NF=2� 1, and the resulting sys-
tem of dimension NF is then solved by the integrators mentioned below.
3.2. Exponential integrators

Exponential integrators are a class of integrators that emerged from an improved ability in numerical soft-
ware to compute the matrix exponential in a reasonable amount of time. Recent developments [15–18] have
yielded an abundance of possibilities with regards to choice of scheme (see for instance [4] and the accompa-
nying source code for a listing). In this study we examine the performance of the class of exponential integra-
tors; thus, the particular choice of exponential integrator is of less importance. After numerous initial
numerical tests, we have chosen CFREE4 as ‘‘the’’ exponential integrator in this report. It gives the best over-
all performance for our problem as measured by the global error and the preservation of invariants over long
integration intervals.

An s-stage explicit exponential integrator of Runge–Kutta type for the system of ordinary differential
equations
_yðtÞ ¼ LyðtÞ þ Nðy; tÞ; yð0Þ ¼ y0 2 Rn ð14Þ
where L is linear and N(y,t) is a (possibly) nonlinear function, is the procedure
Y i ¼
Xs

j¼1

aijðhLÞhNðY j; t0 þ cjhÞ þ expðcihLÞy0 ð15aÞ

y1 ¼
Xs

i¼1

biðhLÞhNðY i; t0 þ cihÞ þ expðhLÞy0 ð15bÞ
in which Yi, i = 1,. . .,s, are internal stages and y1 is the final approximation of y(t1) = y(t0 + h). This format
extends the format for Runge–Kutta schemes in that the coefficients aij and bi are now analytic functions in the
matrix L.

In short, the main properties of an exponential integrator are (i) when the linear part L is zero, we recover
the underlying Runge–Kutta-scheme, and (ii) when N ” 0, exponential integrators compute the exact solution.
The coefficient functions aij(z) and bi(z) (z = hL) are usually listed in a tableau similar to the Butcher tableau
for Runge–Kutta schemes. For CFREE4, the functions are
ð16Þ
where
u‘ðzÞ ¼
1

ð‘� 1Þ!

Z 1

0

eð1�hÞzh‘�1dh; ‘ ¼ 1; 2; . . . ð17Þ
and
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ui;j ¼ uiðcjzÞ; i ¼ 1; . . . and j ¼ 1; . . . ; s: ð18Þ
For ‘ = 1,2,3 (and for z 6¼ 0) the functions are
u1ðzÞ ¼
ez � 1

z
; u2ðzÞ ¼

ez � z� 1

z2
; and u3ðzÞ ¼

ez � z2=2� z� 1

z3
:

There is a singularity at z = 0 that could potentially lead to cancellation errors for small time steps. In order to
avoid this in our experiments, these so called u functions are evaluated by scaling the argument z, using a Padé
approximant of u‘, and squaring the result. Details for this are presented in [4] and further analyzed in [19,20].

Stiff order analysis of exponential integrators was introduced as an analytical tool in [17] which addresses
the convergence of exponential integrators for semi-linear parabolic partial differential equations. To obtain
order p convergence in that case, independently of spatial resolution, stiff order p for the exponential integra-
tor is required. Stiff order conditions represent an additional set of order conditions, including the classical
order conditions as a special case. The CFREE4 scheme is only of stiff order 2, but still outperformed the other
schemes in the initial study, including expensive schemes with high stiff order, though only marginally in some
cases.

The report [21] is a study of two fourth order exponential integrators on the nonlinear Schrödinger equa-
tion, one Lawson integrator with stiff order 1, and ETD4RK from [16] with stiff order 2. Some effects (exhib-
ited through order reduction) were attributable to low stiff order of the Lawson integrators, possibly also
connected to preservation of fixed points, a condition equivalent to stiff order 2. Given sufficient spatial
smoothness of the nonlinear function, and sufficient smoothness of the initial condition, high stiff order
seemed less important. Also in [21], connections between the Lawson type and split step integrators are
indicated, and it is in this respect that the we include the Lawson integrator of order 4 but stiff order 1,
LAWSON4, with tableau
ð19Þ
Both CFREE4 and LAWSON4 reduce to the same classical fourth order Runge–Kutta scheme when the lin-
ear part is zero.

In the spectral space discretization, the matrix L in (14) for (13) becomes diagonal with elements
Lkk ¼ im2
k ¼ �ik2=8; k ¼ �NF=2; . . . ;NF=2� 1: ð20Þ
The nonlinear function N in (14) becomes
Nðûðk; tÞ; tÞ ¼ 2i F�1ðûðk; tÞÞ
�� ��2ûðk; tÞ: ð21Þ
Our implementation uses fixed step sizes for all schemes, and as the linear part is time-independent, the func-
tions eciz and ui,j are computed only at time zero of the integration and cached for the subsequent integration
steps. Thus, the cost of evaluating the exponential and the u functions are amortized over long integration
intervals.

3.3. Second order multisymplectic spectral

The multisymplectic formulation for the nonlinear Schrödinger equation was introduced in [2], as an inte-
grator being symplectic in both time and space. Multisymplectic integrators preserve exactly a discrete version
of multisymplecticity. If the Hamiltonian function S(z) is space and time independent, the PDE will possess
local energy and momentum conservation laws. In addition, if S(z) is quadratic in z, a multisymplectic inte-
grator will preserve exactly these local conservation laws and, in the periodic case, the associated global con-
servation laws.
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Although the Hamiltonian for the NLS equation is space and time independent, it is not quadratic and thus
only multisymplecticity is exactly conserved in this case. Nevertheless, multisymplectic integrators have been
reported to preserve the conservation laws better than classical Runge–Kutta schemes [1].

We will first show the multisymplectic formulation for a finite difference discretization of a PDE, then we
see how it simplifies when using a spectral discretization in space.

Eq. (1) can be written in multisymplectic form by letting u = p + iq and augmenting the phase space with
the variables v = px and w = qx. The system obtained is
qt � vx ¼ 2ðp2 þ q2Þp
� pt � wx ¼ 2ðp2 þ q2Þq

px ¼ v

qx ¼ w

ð22Þ
A Hamiltonian PDE is defined as multisymplectic if it can be written in the form
Mzt þ Kzx ¼ rzSðzÞ

where M and K are skew-symmetric matrices, and S is a smooth function of the state variable z. Formulation
(22) of the nonlinear Schrödinger equation is multisymplectic provided
z ¼

p

q

v

w

0
BBB@

1
CCCA; M ¼

0 1 0 0

�1 0 0 0

0 0 0 0

0 0 0 0

0
BBB@

1
CCCA; K ¼

0 0 �1 0

0 0 0 �1

1 0 0 0

0 1 0 0

0
BBB@

1
CCCA;
and SðzÞ ¼ 1
2
ððp2 þ q2Þ2 þ v2 þ w2Þ.

The multisymplectic conservation law is
xt þ jx ¼ 0 ð23Þ

where x and j are alternating forms
xðU ; V Þ ¼ hMU ; V i ¼ V TMU and jðU ; V Þ ¼ hKU ; V i ¼ V TKU ð24Þ

for two solutions, U and V, of the variational equation associated to the PDE (22) [2]. An integrator of the
system (22) is multisymplectic if and only if a discretized version of (23) is preserved exactly.

The centered cell discretization [2] is a centered difference approximation in space to (22), and implicit mid-
point in space, which can be proven to be a multisymplectic scheme. However, in our periodic case, the finite
difference discretization in space is inferior to a spectral space discretization, and thus, it has not been included
in the numerical tests in this report.

Instead, the centered cell discretization is modified to use a spectral discretization in space. Approximation
of space differentiation can be seen as multiplication by the spectral differentiation matrix D [22],
du
dx
� Dfukg; uk � uðxkÞ; D ¼ ð�1Þj�k p

D cot p
D ðxj � xkÞ if j 6¼ k;

0 if j ¼ k:

(
ð25Þ
Replacing all space derivatives in (22) with spectral differentiation using D, and modifying the multisymplectic
conservation law (23) accordingly, in [1] the authors prove that this together with implicit midpoint in time
yields a multisymplectic scheme for the nonlinear Schrödinger equation. We denote this scheme MSSPEC-
TRAL2. The implicit equation at each time step is solved numerically using a simplified Newton iteration.
3.4. Fourth order split step scheme

Split step schemes have been used for a long time for integrating the nonlinear Schrödinger equation in
physical applications. In our context, [23] is an early reference to the type of scheme. Taha and Ablowitz
[24] give an extensive survey of the prime integrators for the numerical solution of the nonlinear Schrödinger
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equation, and conclude that Tappert’s split step Fourier scheme [23] is in most cases superior to the other
schemes considered. The paper [25] investigates numerical aspects of the basic first order split step Fourier
method using linearization techniques.

For the split step Fourier method to be comparable to the fourth order exponential integrators used, we
first construct a second order scheme by using a Strang splitting technique [26] and the same splitting as
for exponential integrators. Let Uh

rk4cðyðt0ÞÞ be the approximation to y(t0 + h) produced by Kutta’s classical
fourth order scheme for the problem _yðtÞ ¼ Nðy; tÞ. Then a Strang splitting scheme for (14) is
Table
Time u

(a) NF

CFRE
LAWS
SPLIT
MSSP

(b) NF

CFRE
LAWS
SPLIT
MSSP

(c) NF

CFRE
LAWS
SPLIT
MSSP

(d) NF

CFRE
LAWS
SPLIT
MSSP

Symbo
Uh
ss2ðy0Þ ¼ Uh=2

rk4c 	 expðhLÞ 	 Uh=2
rk4cðy0Þ ð26Þ
with L and N given by (20) and (21). Then we use Yoshida’s formula
Uss4ðy0Þ ¼ Uc1h
ss2 	 Uc0h

ss2 	 Uc1h
ss2 ðy0Þ ð27Þ
to construct a fourth order split step scheme from the second order Strang scheme, where c0 ¼ �21=3

2�21=3 and
c1 ¼ 1

2�21=3 [27]. Scheme (27) will be denoted SPLITSTEP4 in the remainder of this paper.

SPLITSTEP4 is picked as a representative and well-studied scheme within the class of split step schemes for
the nonlinear Schrödinger equation. However, recently symplectic partitioned Runge–Kutta schemes have
been constructed for the nonlinear Schrödinger equation which maybe could outperform the SPLITSTEP4
scheme used here, as reported in [28]. In further studies, these new split step schemes should also be compared
to exponential integrators.

4. Numerical results

The NLS (1) equation with a perturbed plane wave solution as the initial condition (5) has been integrated
with various choices of the spatial discretization parameter NF and the temporal step size h. Our aim is to
determine the time length for which the numerical solution is valid, where the validity is determined by
how well the nonlinear spectrum is preserved, and thereby judge the chosen integrators. Table 1 indicates
the length of time for which the numerical solution was accepted according to criteria based entirely on the
nonlinear spectrum and constitutes the main result from this work.
1
ntil numerical solution fails

h = 10�1 h = 10�2 h = 10�3 h = 10�4

¼ 64
E4 6.9 (1) 6.9 (1) 6.9 (1) 6.9 (1)
ON4 6.9 (1) 6.9 (1) 6.9 (1) 6.9 (1)
STEP4 6.7 (1,2) 6.9 (1) 6.9 (1) 6.9 (1)
ECTRAL2 26.2 (1) 6.9 (1) 6.9 (1) 6.9 (1)

¼ 128
E4 90.1 (1) 157.9 (1) 157.9 (1) 157.9 (1)
ON4 6.8 (2) 157.9 (1) 157.9 (1) 157.9 (1)
STEP4 7 (1,2) 2049 (r) 157.9 (1) 157.9 (1)
ECTRAL2 5.9 (2) 207.8 (1) 158 (1) 157.9 (1)

¼ 256
E4 90.3 (1) 3165 (r) >10000 >10000
ON4 6.7 (2) 1891 (r) >10000 >10000
STEP4 7.1 (1,2) 2400 (r) >10000 >10000
ECTRAL2 5.9 (2) 207.6 (2) 1426 (r) >500

¼ 512
E4 90.3 (1) 3166 (r) >10000 >10000
ON4 6.7 (2) 1993 (r) >10000 >10000
STEP4 7.1 (1,2) 907.4 (r) 1479 (r) >10000
ECTRAL2 5.9 (2) 109.8 (2) 1426 (r) n/a

ls next to numbers denote reason for failure.
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4.1. Preservation of nonlinear spectrum

The spectrum of the NLS equation is invariant in time, but the truncation errors incurred by the numerical
schemes result in numerical solutions that can be viewed as the exact solutions of corresponding perturbed
equations, for which the spectra evolve in time. Thus, the positions of the single/double points and the bands
of real discriminant D(u,k), computed by software briefly described in Section 2.1, will in general vary in time.
It has been customary in similar studies to monitor conservation of momentum, energy and norm. These three
quantities are expressible in terms of the nonlinear spectrum, but alone fail to describe all the properties of the
spectrum.

The initial condition is a perturbation of an unstable state, and the numerical challenge is to balance near
the border of this instability. We allow for discrepancies that are small enough not to excite any of the unstable
modes, or said differently, we avoid topological changes to the spectral configuration.

If the gap size becomes zero (gap closure) we obtain a degenerate double point, as in the plane wave
solution � = 0, Fig. 1a, and the solution may then undergo a homoclinic crossing, entering a completely dif-
ferent state. A typical scenario after a gap closure is that eigenvalues at the end of the bands k�j obtain a
nonzero real part and the mode enters a ‘‘cross’’ state. This corresponds to the solution having different
spatial structure. Spatial symmetry is also typically lost as the modes may start to drift spatially. As sym-
metry is not enforced in the numerical solutions, accumulation of non-symmetric round-off errors may even-
tually ruin the numerical solution. In the non-symmetric (non-even) case, it is seen in [14] that the real part
of the eigenvalues may grow without being initiated by a homoclinic crossing. The gap sizes and the mag-
nitude of the real part of the single points have therefore been used as the main indicators of the validity of
the numerical solution.

The numerical solution at time T is accepted given that the topological properties of the spectrum have
remained unchanged for 0 6 t 6 T. Let
GjðtÞ ¼ kþj ðtÞ � k�j ðtÞ; j ¼ 1; 2; ð28Þ
denote the gap (complex valued) Gj at time t with reference to Fig. 1a.
We monitor the deviations in the spectrum k�j , examining the real and imaginary components indepen-

dently. The precise requirements used are
1

100
jImGjð0Þj < jImGjðtÞj < 100jImGjð0Þj for j ¼ 1; 2;

jReGjð0Þj < 5
 10�5:

ð29Þ
The smallest t for which one of these requirements are not met in a given scenario is printed in Table 1. The
specific numbers 100 and 5 · 10�5 have been chosen to reveal the significant differences between the integra-
tors in preserving the vital features of the phase space structure, that is, allowing everything but topological

changes in the spectrum. The numbers must also be comparable to the eigenvalue accuracy of the spectrum
computation, which in our case has been Oð10�8Þ. Also note that jImGj(t)j never reached its upper limit before
the solution was invalidated by the other requirements in our experiments.

Based on the numerical solutions and the accompanying spectra produced, we find that the nonlinear spec-
trum evolves in four different ways.

(1) Gap 1 closes (jImG1j � 0). Subsequently, jReG1j is nonzero. The numerical solution is said to ‘‘cross’’ a
homoclinic orbit and enter a different state, often with the center mode spatially shifted half the domain
length. This is exemplified in Fig. 3.

(2) Gap 2 closes (jImG2j � 0). Subsequently, jReG2j is nonzero. Gap 2 corresponds to the antiperiodic
mode appearing on both sides of the center mode, and also experiences spatial shift during gap closure
and homoclinic crossing. This is exemplified in Fig. 4.

(1, 2) Both gaps close. This is similar to the two cases above, but here both gaps close during the time span
defined by one peak of a mode. In the scenarios included here, this has been the onset of computational
chaos in the numerical solution. This is exemplified in Fig. 5.



Fig. 4. Example of failure due to closure of G2. MSSPECTRAL2, h = 0.01, NF ¼ 256. (a) Gap evolution and (b) ju(x, t)j.

Fig. 3. Example of failure due to closure of G1 for CFREE4, h = 0.1, NF ¼ 128. At each time slice, the points k�j are located at the end of
the bars drawn, and the length of the bar denotes the extent of the gap. In the surface plot to the right, a darker tone indicates higher value,
compare with Fig. 2. (a) Gap evolution and (b) ju(x,t)j.

Fig. 5. Example of failure due to closure of G1 and G2. SPLITSTEP4, h = 0.01, NF ¼ 256. Development of computational chaos as
observed here is typical for SPLITSTEP4. (a) Imaginary part of gap sizes as a function of time and (b) ju(x, t)j.
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Fig. 6. Example of failure due to breakdown of symmetry, nonzero real part of single p
j. LAWSON4,h= 0201,NF¼256. The

imaginary extent of the gaps is well preserved in this case. (a) Real part of gap sizes as a function of time and (b) plot ofju(x,t)j.296H. Berland et al. / Journal of Computational Physics 225 (2007) 284–299
(4) jReG2j becomes nonzero, without any gap closures. This only happens on long time scales, and is due
to accumulation of non-symmetric round-off errors. The sign of kþ2 and k�2 is always different, and the
sign of kþ2 determines the direction (right or left) the corresponding mode will travel in phase space. The
real extent determine the speed of spatial drift. In some of the cases, this case is followed by jReG1j
becoming non-zero as well. This is exemplified in Fig. 6.

It is evident from the data in Table 1 that sufficient spatial resolution is a first prerequisite for a valid
long-time computation. Using only NF ¼ 64, G1 closes during the first peak of the center mode for all inte-
grators independent of temporal step size h, except for MSSPECTRAL2, which fails at the second center
mode peak.

Increasing spatial accuracy to NF ¼ 128 one can integrate for a longer period of time, but still, for most
configurations G1 closes early. Of special interest is the exceptional result of SPLITSTEP4 for h = 10�2, where
gap closures are avoided but the accumulation of non-symmetric round-off error eventually grows large
enough to destroy the solution. However, finer experiments indicated that there is a small window for h in
which better spectrum preservation is achieved for this integrator. In general, for NF ¼ 128 and h 6 0.01,
there are no significant differences in the performance of the various schemes.

At NF ¼ 256 the spatial resolution is sufficient to reveal differences in the time-integration. If h 6 0.001, all
of the schemes are able to integrate for as long as we tested. CFREE4, LAWSON4, and SPLITSTEP4 all suf-
fer from a growth in the real part for h = 0.01, but all are good for smaller step sizes. This non zero real part is
visible in the surface plots as a spatial drift in the modes. MSSPECTRAL2 behaves well for NF ¼ 128 for
h = 0.01 but suffers from a growth in the real part for h = 0.001 where the other integrators do not experience
as much growth. Due to the computational complexity, MSSPECTRAL2 has not been computed over as long
time intervals as the others.

Not much is gained by increasing the spatial resolution to NF ¼ 512, but one should note that this turns
out to be more difficult for SPLITSTEP4, as we observe a spatial drift for h = 0.001 which does not occur at
NF ¼ 256. Further, the validity time is smaller for the higher resolution of NF ¼ 512 for h = 0.01 and
h = 0.001. It is only in this case that SPLITSTEP4 is significantly less appealing than the exponential
integrators.

The experiments have all been run on Intel Pentium IV processors using MATLAB Release 14SP3 (Version
7.1). During the experiments we noted that in some scenarios Release 14SP3 gave different numerical results
(usually slightly worse) than those obtained with the same code and processor but using MATLAB Release 13
(Version 6.5). Effects due to round-off errors, as in this case with the growth in real part, is more prone to differ
between releases of MATLAB, and also possibly differ with the specific hardware used.
ointsk�



Table 2
Number of integration steps per CPU second, 2.4 GHz Intel Pentium IV

Integrator h = 0.1 h = 0.01 h = 0.001

(a) 64 Fourier modes
CFREE4 1020.4 1089.9 1091.2
LAWSON4 913.2 1119.2 1114.1
SPLITSTEP4 423.7 435.4 443.7
MSSPECTRAL2 69.7 102.1 115.5

(b) 256 Fourier modes
CFREE4 593.5 649.4 656.8
LAWSON4 630.9 674.3 678.2
SPLITSTEP4 211.2 215.4 226.5
MSSPECTRAL2 2.6 4.3 5.1
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4.2. Computational time

Measuring computational complexity is a difficult task, and the results in this section should only be taken
as an indication. Time has been measured by the built-in cputime command in MATLAB. The exponential inte-
grators have been implemented using the EXPINT-package, and thus it incurs an overhead in that the package is
designed modularly. A specific exponential integrator applied to a specific problem could be hand-crafted and
would results in speedup for that exponential integrator and problem. In the exponential integrators, the time
step is constant, which facilitates caching of the exponential function of the linear part and the u functions.
This is automatically taken care of by the EXPINT-package, and is also crucial for an exponential integrator
implementation of this type. The multisymplectic code is to a certain degree already tailored to the problem
in question, but nevertheless, this code is probably the one which could gain the most relative performance
increase from optimization and tuning in the root solver. However, it is not believed that any optimization
performed on the code for MSSPECTRAL2 will make any substantial changes to the results obtained in this
work.

Table 2 contains timing data measured in steps per second with varying time step and integrator. Exponen-
tial integrators should not be significantly dependent on time step, but the multisymplectic integrator is, due to
easier solvability of the root problem for decreasing h.

5. Discussion

In this study, we have used inverse spectral method as a tool to determine whether a solution obtained
numerically for different integrators and discretization parameters is acceptable. We have integrated initial
conditions �-close to unstable states, which makes the problem hard numerically, as truncation errors from
the space discretization, truncation errors from time-integration and round-off errors in the computer may
eventually force the numerical solution to enter another state and then diverge from the exact solution. An
unacceptable solution in this context means that the spectrum of the solution has changed topologically from
its initial state, possibly through homoclinic crossings.

We tested the integrators CFREE4, LAWSON4, SPLITSTEP4, and MSSPECTRAL2, the last one being a
second order implicit multisymplectic integrator. In short, CFREE4 was shown to exhibit the most stable
properties in terms of being able to integrate for a long time avoiding topological changes to the spectrum.
In addition, it is the computationally fastest integrator for given discretization parameters.

The two exponential integrators outperformed the other schemes. CFREE4 appeared slightly more stable
than LAWSON4, perhaps attributable to higher stiff order, or its preservation of fixed points of the differential
equation. SPLITSTEP4, being related to LAWSON4, was comparable, but performed less reliably than the
exponential integrators. Its performance was not monotone in terms of spatial and temporal resolution.

The multisymplectic integrator MSSPECTRAL2, which gave good results on the one-mode case in [1], was
not able to match the other schemes in this study, both in terms of preservation of spectrum and especially in
terms of computational complexity.
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The nature and computational demands of these experiments dictated that all possibilities could not be
tested, and not all scenarios could be integrated until breakdown. The experiments could have been performed
with additional configurations, possibly revealing more information on for instance SPLITSTEP4’s peak per-
formance on NF ¼ 128 and h = 0.01. Also, there is a multitude of alternative exponential integrators that
probably would have performed along the lines of CFREE4, at least those with stiff order at least 2. The con-
clusion here is more to advocate the use of exponential integrators, more than to advocate the use of the spe-
cific CFREE4 scheme.
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